If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6=(3/5)(10-5x)
We move all terms to the left:
6-((3/5)(10-5x))=0
Domain of the equation: 5)(10-5x))!=0We add all the numbers together, and all the variables
x∈R
-((+3/5)(-5x+10))+6=0
We multiply parentheses ..
-((-15x^2+3/5*10))+6=0
We multiply all the terms by the denominator
-((-15x^2+3+6*5*10))=0
We calculate terms in parentheses: -((-15x^2+3+6*5*10)), so:We get rid of parentheses
(-15x^2+3+6*5*10)
We get rid of parentheses
-15x^2+3+6*5*10
We add all the numbers together, and all the variables
-15x^2+303
Back to the equation:
-(-15x^2+303)
15x^2-303=0
a = 15; b = 0; c = -303;
Δ = b2-4ac
Δ = 02-4·15·(-303)
Δ = 18180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18180}=\sqrt{36*505}=\sqrt{36}*\sqrt{505}=6\sqrt{505}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{505}}{2*15}=\frac{0-6\sqrt{505}}{30} =-\frac{6\sqrt{505}}{30} =-\frac{\sqrt{505}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{505}}{2*15}=\frac{0+6\sqrt{505}}{30} =\frac{6\sqrt{505}}{30} =\frac{\sqrt{505}}{5} $
| 20t-20=24t-42 | | 8+5n-6=37 | | 19,1y-4(y+0,3)=46,5 | | 8x-2=70x | | 4(d+7)=16 | | 16x+-20=360 | | 19,1-4(y+0,3)=46,5 | | 3/x=12-2 | | 13b+3=16b-27 | | y=5.25 | | 15z-33=8z+44 | | 40=5/7x | | 5^x=2.5 | | (x+3)^2(x-3)^2=0 | | 20x+6x+9=180 | | (31/7)=24/x | | x2(x−6)=6 | | ⅓x=¾ | | -24=12+m | | j-20/4j=60 | | 4x+20+2(x+7)=0 | | n=(42+37)8 | | 12x+23x+5=13 | | 2/9x90= | | 3x-5x=10-4x | | 2m+5m=10 | | 15x-22.5=12+22.5+2x | | 3c-6=180 | | 2y+19=y+43 | | 7x+-9=47 | | 2s-65=s | | 57.6=10d |