69/(z+4)=162/2z

Simple and best practice solution for 69/(z+4)=162/2z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 69/(z+4)=162/2z equation:


D( z )

z+4 = 0

z+4 = 0

z+4 = 0

z+4 = 0 // - 4

z = -4

z in (-oo:-4) U (-4:+oo)

69/(z+4) = (162/2)*z // - (162/2)*z

69/(z+4)-((162/2)*z) = 0

69/(z+4)-81*z = 0

69/(z+4)+(-81*z*(z+4))/(z+4) = 0

69-81*z*(z+4) = 0

69-81*z^2-324*z = 0

69-81*z^2-324*z = 0

3*(23-27*z^2-108*z) = 0

23-27*z^2-108*z = 0

DELTA = (-108)^2-(-27*4*23)

DELTA = 14148

DELTA > 0

z = (14148^(1/2)+108)/(-27*2) or z = (108-14148^(1/2))/(-27*2)

z = (6*393^(1/2)+108)/(-54) or z = (108-6*393^(1/2))/(-54)

3*(z-((6*393^(1/2)+108)/(-54)))*(z-((108-6*393^(1/2))/(-54))) = 0

(3*(z-((6*393^(1/2)+108)/(-54)))*(z-((108-6*393^(1/2))/(-54))))/(z+4) = 0

(3*(z-((6*393^(1/2)+108)/(-54)))*(z-((108-6*393^(1/2))/(-54))))/(z+4) = 0 // * z+4

3*(z-((6*393^(1/2)+108)/(-54)))*(z-((108-6*393^(1/2))/(-54))) = 0

( z-((108-6*393^(1/2))/(-54)) )

z-((108-6*393^(1/2))/(-54)) = 0 // + (108-6*393^(1/2))/(-54)

z = (108-6*393^(1/2))/(-54)

( z-((6*393^(1/2)+108)/(-54)) )

z-((6*393^(1/2)+108)/(-54)) = 0 // + (6*393^(1/2)+108)/(-54)

z = (6*393^(1/2)+108)/(-54)

z in { (108-6*393^(1/2))/(-54), (6*393^(1/2)+108)/(-54) }

See similar equations:

| -3/8+x | | 2*(a^2+4a-4)= | | 8-7x=10-21x | | -3/8+1 | | 0.4X-0.1(12-4X)=0.5(X-8) | | 2x-44=9x | | x-(x*10/100)=2000 | | 0.6X+7.1=4.4 | | 2=11+3(x+3) | | 3/5*4/7*1/3= | | 2x-1=2(x+5) | | a^2+4a-4= | | 9e+22= | | 6.7x+9-4.7x=1 | | 10-2x=14-4x | | 10+z=18 | | 2x+x+24+x-4=180 | | 36/2+2=72 | | 29=13+4t | | s=6+4.09s | | 5x+7.01=2x+11 | | 6-2/a=-10 | | 123x+456-789x=100000000 | | t=6+4.09t | | -2+a=-2+2a | | 4=11+m | | 2+48=-5(3x-10) | | -8+9x+3-3x= | | Y=.80*(Y-200)+100+175 | | 17-5/4=-10 | | 5(2x+8)=-40+50 | | 10x+y=13.5 |

Equations solver categories