If it's not what You are looking for type in the equation solver your own equation and let us solve it.
65=14x^2
We move all terms to the left:
65-(14x^2)=0
a = -14; b = 0; c = +65;
Δ = b2-4ac
Δ = 02-4·(-14)·65
Δ = 3640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3640}=\sqrt{4*910}=\sqrt{4}*\sqrt{910}=2\sqrt{910}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{910}}{2*-14}=\frac{0-2\sqrt{910}}{-28} =-\frac{2\sqrt{910}}{-28} =-\frac{\sqrt{910}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{910}}{2*-14}=\frac{0+2\sqrt{910}}{-28} =\frac{2\sqrt{910}}{-28} =\frac{\sqrt{910}}{-14} $
| n+1/2-5/4n=1/2+2n | | 34/4=10/y | | 96=6x(4/5) | | -5(12-5x)=84 | | x^2-24x=35 | | 2x-17x+21=0 | | 6+x+9=20 | | 2x(x+45)=150 | | z^2-24z=35 | | w/13+6=13 | | 7v=8+5v | | 5×5=5x | | 175x-75x+47750=50500-150x | | 55+2c=127 | | 3(4x-2.9)=6x-8.7 | | 3-x-90=2x+25-10x | | 138-(5x+16)=5(x+9)+x | | 6x-20=10x+14 | | 0=-16t^2-29t+6 | | M^2-16m=33 | | 5.25t+5=16.5t+14 | | 4×(x+1)=52 | | 7/10=-3/8+n | | M^2-16m=-33 | | 3x=6,561 | | 15x+12+5x+18=180 | | 25x^2-41x+19=0 | | -2x10=65 | | 41/2n=131/2 | | -2(4-x)=2(5+2x) | | 2(3x-3)=5(x+5) | | 5*2^x-5=25 |