If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-8=0
a = 64; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·64·(-8)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*64}=\frac{0-32\sqrt{2}}{128} =-\frac{32\sqrt{2}}{128} =-\frac{\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*64}=\frac{0+32\sqrt{2}}{128} =\frac{32\sqrt{2}}{128} =\frac{\sqrt{2}}{4} $
| 22+w/3=-7 | | (x+252)/294=3.5 | | (2x-3)+4=8x-8 | | (8-3i)(-2-5i)=0 | | 3y+4y=162 | | 4x+6=2x-4(3x-5)* | | 5x=6(x-4) | | 28(y+2)=4(6y+7) | | 3y÷4=21 | | 15/2+x=5/4-4x | | 2x+3+12=4x | | 2x+5=15-15x | | 7+2k=k+13 | | i×i=-1 | | x+x+(2-5)=23 | | 3x+1x=59 | | c/2+3=-3c–4 | | y-3/3+y/7=1/5 | | 2(x+5)+1=6x-4(-2+x) | | 8(7a+3)=248 | | 4+12y=63 | | 1/3+2=-13-8/3x | | (3x+2)+(7x-12)=180 | | 6b/12+2b=20 | | 8t-3t=5t | | 10+23(3−7x)=−13x+3 | | 8-5p=-3p | | -r-6=10 | | x^2=18x-63 | | x+12=2(x+12)-14 | | x-12=2(x-12)-14 | | x+4x=1500 |