If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-12x=0
a = 64; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·64·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*64}=\frac{0}{128} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*64}=\frac{24}{128} =3/16 $
| (19x-17)-(3x-72)=23-(4+14x) | | 40-2x=50 | | 5x÷10=490 | | 10(7+x)=120 | | y+8.45=3.9 | | 12t=4=20 | | 2(x+2)=2/3(x+6) | | (1-x)*0.14=x | | 8x-14+7x+5=111 | | 5x+5=-3x-11 | | c2=49 | | 14=x/2-9 | | (3x-1)^2+22=6 | | 1/5(x=10)+2x=4.4 | | 25x-12=37 | | 3y+12=-24 | | -3-4(1-9b)=25 | | 6-8n+5n=18-75 | | (10x-31)+69=180 | | 7x-21=x+5 | | 6÷x=1 | | 2/3k-(I+1/4)=1/12(k+1/4) | | (10x-31)-69=180 | | y=6(2)-2 | | 5(2x-7=2x-3 | | y+3y+5y=18 | | 98-7x=8x+8 | | 16-5(5x-5)=-4 | | 3x-2(-2/3x+5/3)+10=0 | | 54.4-0.6(y+9)=0.4y | | 542.4-0.6(y+9)=0.4y | | 3/4a=7/3 |