If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-128=0
a = 64; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·64·(-128)
Δ = 32768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32768}=\sqrt{16384*2}=\sqrt{16384}*\sqrt{2}=128\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-128\sqrt{2}}{2*64}=\frac{0-128\sqrt{2}}{128} =-\frac{128\sqrt{2}}{128} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+128\sqrt{2}}{2*64}=\frac{0+128\sqrt{2}}{128} =\frac{128\sqrt{2}}{128} =\sqrt{2} $
| −8b=12 | | -2(5a+6)=4(3a+8) | | 7.96=6.4-2.7n+7.5 | | 2+4x+3x=16 | | 1/5(5-x)-1/2(3-2x)=1/2x+1 | | |p+5|=|p+8| | | |p+5|=|p+8| | | -11x+12=10x+6 | | -3(1-x)+3x=5x-3 | | -5x=3x-34 | | -12r=-5r+49 | | 99=4x+7 | | 2(4-3x)=-6+2(x-1) | | -x-13=18 | | 3x-29+10=2x-9 | | 4x-10=-10+4x | | x=-84+1/1.625 | | 1/2(x+4)=3/2x-8 | | -2x+4-8x-1=9+5 | | -5+m/6=1 | | 3+1.50m=5.50m+1.25 | | 15000+160x=24000-200x | | 7+14=-3(6x-7) | | 2(g-8)=14 | | 9x+4=11x+1 | | 109-u=186 | | 2(12x-3)=-150 | | 2x-29+10=2x-9 | | 3.12x/3=-88 | | -0.2p=4 | | x=90(2x+12) | | -2(r-10)=-18 |