If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64k^2-100=0
a = 64; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·64·(-100)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*64}=\frac{-160}{128} =-1+1/4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*64}=\frac{160}{128} =1+1/4 $
| 3k-13=3k-5 | | 3z-1=z+5-4z | | 8x-22+6x=-2+38x-5 | | 5a-10=10(12+1/4a) | | 3x÷6-8=15 | | x+20+3x-7=7x-17 | | 2+7x=-89 | | –3y=–10y+7y | | 6=3m−3 | | 44=5x-9 | | Y=1/7x+14 | | 24p2-58=-52 | | h(0)=21 | | 36x^2-420x-132=0 | | -1/3(2-4x)=15 | | Y=3.19-0.003x | | 4x+12x=16x=12x= | | –9c+10=–9c+2+8 | | x–4+5=2 | | -2=x+6/3 | | b*7=b7 | | 8m-2m+4=10 | | -5+3b=7+5b | | 4x+12x=1616x=12x= | | 7g-6g=6 | | 15/x=0.85 | | 11x+2x-64=-11x+38 | | 1/3(2n-1/4)=7/12n= | | 8(-4x+2)=88 | | -32=-8-6r | | -7z=9-6z | | -8(6+7x)=-272 |