If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63y=49+18y^2
We move all terms to the left:
63y-(49+18y^2)=0
We get rid of parentheses
-18y^2+63y-49=0
a = -18; b = 63; c = -49;
Δ = b2-4ac
Δ = 632-4·(-18)·(-49)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-21}{2*-18}=\frac{-84}{-36} =2+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+21}{2*-18}=\frac{-42}{-36} =1+1/6 $
| (3.25x)=50 | | 7x=2/5 | | 11a+12a+-12a+-7a+-11a=14 | | (-5/6)(q)-(q-1/2)=1/4(q+1) | | 4d-24=36 | | -1=3-2s | | (-5/6q)-(q-1/2)=1/4(q+1) | | 5p+3p-8p+4p=12 | | 2x+14=5x-6 | | 1.4x^2=0.9x^2+24.1 | | 16+5x/3=16 | | 3y/10-1=3-5y/2 | | 4x+28=x-1 | | 6v-v-5v+2v-v=18 | | -4.9x^2+10x+45=0 | | -13x+39=0 | | -3y+-8y+9y=20 | | 35x+18(150-x)=x | | 9+3b+8=8+3b+9 | | 2.9×x=-6.04 | | 18+8t=9(t=2) | | 3x−5(3−2x)=6x−15 | | (5g−20)(−2g+8)=0 | | 5/2x+14=30 | | 2d+3=5d−6 | | 52 x+14=30 | | 3=−2c+4 | | 7x-45=25-3x | | 0,333b=4 | | 13b=4 | | g^2-12g-49=0 | | 6p+4p-2p-6p+2p=16 |