If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x^2=126
We move all terms to the left:
63x^2-(126)=0
a = 63; b = 0; c = -126;
Δ = b2-4ac
Δ = 02-4·63·(-126)
Δ = 31752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31752}=\sqrt{15876*2}=\sqrt{15876}*\sqrt{2}=126\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126\sqrt{2}}{2*63}=\frac{0-126\sqrt{2}}{126} =-\frac{126\sqrt{2}}{126} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126\sqrt{2}}{2*63}=\frac{0+126\sqrt{2}}{126} =\frac{126\sqrt{2}}{126} =\sqrt{2} $
| x+6x=126 | | x+4x=126 | | x+x+9=126 | | x+x+10=126 | | x+-x+2=126 | | x+x+5=126 | | x+x+1=126 | | 3(x-5)=7x=+12 | | x+x+6=126 | | x+x+4=126 | | x+x+3=126 | | -7x−3x-17=8x+19 | | (x+3)+(x+5)=126 | | 19+4x=3x+14 | | (x+2)+(x+5)=126 | | (x+2)+(x+6)=126 | | (x+2)+(x+2)=126 | | (x+4)+(x+4)=126 | | (x+3)+(x+4)=126 | | 5f+.5=15.5 | | (x+2)+(x+4)=126 | | −6y=−4+12 | | 11=4m+7m | | 54+3x=643 | | 180-(105+2x)=0 | | 6=4m+2m | | 9u+7=64-10u | | 2x+3=3x+3-x | | 4x+2.4=18.8 | | 2+7x=8+3x | | -4x+4=12-4x | | 3x^2=12x-20 |