63=x+x-2+1/2x

Simple and best practice solution for 63=x+x-2+1/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 63=x+x-2+1/2x equation:



63=x+x-2+1/2x
We move all terms to the left:
63-(x+x-2+1/2x)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(2x+1/2x-2)+63=0
We get rid of parentheses
-2x-1/2x+2+63=0
We multiply all the terms by the denominator
-2x*2x+2*2x+63*2x-1=0
Wy multiply elements
-4x^2+4x+126x-1=0
We add all the numbers together, and all the variables
-4x^2+130x-1=0
a = -4; b = 130; c = -1;
Δ = b2-4ac
Δ = 1302-4·(-4)·(-1)
Δ = 16884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16884}=\sqrt{36*469}=\sqrt{36}*\sqrt{469}=6\sqrt{469}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(130)-6\sqrt{469}}{2*-4}=\frac{-130-6\sqrt{469}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(130)+6\sqrt{469}}{2*-4}=\frac{-130+6\sqrt{469}}{-8} $

See similar equations:

| -2.x+6=-3.x+10 | | 12x+6x-9=0 | | 5.x-10=5 | | 3x+1+5∙3x−1-7∙3x+21=0 | | 3x+1+5∙3x−1−7∙3x+21=0 | | 3.5x-8.25=19.75 | | 4.x+5=-6 | | (2)/(11x)+(1)/(4)=(81)/(22x)-(1)/(3) | | -4x-9=-3x-10 | | 7w+9=2w-4 | | 2y^2–32y+128=0 | | -3x-1=-4x+1 | | 1=7.x-5 | | 5x+46=81 | | 4x+35=43 | | -3=1.x+2 | | 4-8n=8-10n | | x²(x-2)-5(x-2)=0 | | 2.x-3=3 | | 6x+3x-12=3x-14x+4x | | 5y-3/2y+1=2/3 | | 3.x+4=-7 | | 3x=-8x-8-12 | | 5x+5=3x×7 | | 4.2^(2x+1)-9.2^(x)+1=0 | | 8x-20-3x-6-14+4x=5 | | (4)/(x)=(29)/(8x)+3 | | 5-9x/5=-2 | | 8x-20-3x-6-14-4x=5 | | 10+2x=4x+8 | | 7x+0,27=-10x | | (3n-60)°=) |

Equations solver categories