6294.75=(x*5)+((8.5*(5x-9))+((1/3)*(5x-9)+x))

Simple and best practice solution for 6294.75=(x*5)+((8.5*(5x-9))+((1/3)*(5x-9)+x)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6294.75=(x*5)+((8.5*(5x-9))+((1/3)*(5x-9)+x)) equation:



6294.75=(x*5)+((8.5(5x-9))+((1/3)(5x-9)+x))
We move all terms to the left:
6294.75-((x*5)+((8.5(5x-9))+((1/3)(5x-9)+x)))=0
Domain of the equation: 3)(5x-9)+x)))!=0
x∈R
We add all the numbers together, and all the variables
-((+x*5)+((8.5(5x-9))+((+1/3)(5x-9)+x)))+6294.75=0
We multiply parentheses ..
-((+x*5)+((8.5(5x-9))+((+5x^2+1/3*-9)+x)))+6294.75=0
We multiply all the terms by the denominator
-((+x*5)+((8.5(5x-9))+((+5x^2+1+(6294.75)*3*-9)+x)))=0
We calculate terms in parentheses: -((+x*5)+((8.5(5x-9))+((+5x^2+1+(6294.75)*3*-9)+x))), so:
(+x*5)+((8.5(5x-9))+((+5x^2+1+(6294.75)*3*-9)+x))
determiningTheFunctionDomain ((8.5(5x-9))+((+5x^2+1+(6294.75)*3*-9)+x))+(+x*5)
We get rid of parentheses
((8.5(5x-9))+((+5x^2+1+(6294.75)*3*-9)+x))+x*5
We calculate terms in parentheses: +((8.5(5x-9))+((+5x^2+1+(6294.75)*3*-9)+x)), so:
(8.5(5x-9))+((+5x^2+1+(6294.75)*3*-9)+x)
determiningTheFunctionDomain ((+5x^2+1+(6294.75)*3*-9)+x)+(8.5(5x-9))
We calculate terms in parentheses: +((+5x^2+1+(6294.75)*3*-9)+x), so:
(+5x^2+1+(6294.75)*3*-9)+x
We calculate terms in parentheses: +(+5x^2+1+(6294.75)*3*-9), so:
+5x^2+1+(6294.75)*3*-9
determiningTheFunctionDomain 5x^2+1-9+(6294.75)*3*
We add all the numbers together, and all the variables
5x^2
Back to the equation:
+(5x^2)
Back to the equation:
+(5x^2+x)
We calculate terms in parentheses: +(8.5(5x-9)), so:
8.5(5x-9)
We multiply parentheses
42.5x-76.5
Back to the equation:
+(42.5x-76.5)
We get rid of parentheses
5x^2+x+42.5x-76.5
We add all the numbers together, and all the variables
5x^2+43.5x-76.5
Back to the equation:
+(5x^2+43.5x-76.5)
Wy multiply elements
(5x^2+43.5x-76.5)+5x
We get rid of parentheses
5x^2+43.5x+5x-76.5
We add all the numbers together, and all the variables
5x^2+48.5x-76.5
Back to the equation:
-(5x^2+48.5x-76.5)
We get rid of parentheses
-5x^2-48.5x+76.5=0
a = -5; b = -48.5; c = +76.5;
Δ = b2-4ac
Δ = -48.52-4·(-5)·76.5
Δ = 3882.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48.5)-\sqrt{3882.25}}{2*-5}=\frac{48.5-\sqrt{3882.25}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48.5)+\sqrt{3882.25}}{2*-5}=\frac{48.5+\sqrt{3882.25}}{-10} $

See similar equations:

| 21=9+4k | | 588/d=21 | | 2^140000=x | | 54/g=9 | | 3+10m=173 | | 3x+2+5x=-14 | | 76=5h+6 | | 158=-2-8x | | g/9+63=72 | | 5x-8=-36 | | 54/z=6 | | 50-m=5 | | 4y-16.3=51.3 | | 16+v=28 | | 74-j=70 | | 3^2x=4^5x-1 | | -20=p-10 | | 88=4+7h | | 22=k+8 | | -7x-10=3x-30 | | -7-5|-9+5x|=-37 | | 4y−16.3=53.1 | | (120x)=(2x-10) | | 13y-10+14.6=180 | | 22.41p+20(70-p)=241.64 | | -3.2d=29.28 | | 8y+9y= | | 3t^2+18t+19=0 | | -74=-5y+-24 | | x5+4=12 | | 11=1/5y | | 3.6+(-4)=x1.8 |

Equations solver categories