If it's not what You are looking for type in the equation solver your own equation and let us solve it.
62+j=74/j=12
We move all terms to the left:
62+j-(74/j)=0
Domain of the equation: j)!=0We add all the numbers together, and all the variables
j!=0/1
j!=0
j∈R
j-(+74/j)+62=0
We get rid of parentheses
j-74/j+62=0
We multiply all the terms by the denominator
j*j+62*j-74=0
We add all the numbers together, and all the variables
62j+j*j-74=0
Wy multiply elements
j^2+62j-74=0
a = 1; b = 62; c = -74;
Δ = b2-4ac
Δ = 622-4·1·(-74)
Δ = 4140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4140}=\sqrt{36*115}=\sqrt{36}*\sqrt{115}=6\sqrt{115}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-6\sqrt{115}}{2*1}=\frac{-62-6\sqrt{115}}{2} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+6\sqrt{115}}{2*1}=\frac{-62+6\sqrt{115}}{2} $
| 0.20x+0.45(50)=37.50 | | 28x+8=-8x | | 3x3-12=567-x-5x3-3 | | A^2*b^2=15 | | 5r=48-3r | | 1+x=7*8 | | 1=-3+4y | | -9=u/2+5 | | 11x+9=74.5 | | -11u-6=4u^2 | | 8x-50=520 | | n+7=9+n | | 10x+20=500 | | x+(2x-10)=415 | | F(x)=x^2/240+15 | | 3.020x*10^-4=0.00065 | | x2+46=88 | | 18=-22+38e^-0.38(18) | | -4r+16=6 | | 3r2=12 | | 84/x=70/25 | | 5(3n+5)=7(4n+1)+8 | | 1/4x-(3/4x+2)=8 | | 3^x+5=9^2x+1 | | X-26=5x-36 | | 56q=280 | | 16(−8x−24)=−6x+50 | | 3(2+-3x)=-12 | | –3(x+5)=11 | | 20+4x+3/4=240/4 | | 5+x/5=2/4(3/9-4x) | | 9x-4x+x=18 |