If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2+44x=0
a = 60; b = 44; c = 0;
Δ = b2-4ac
Δ = 442-4·60·0
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-44}{2*60}=\frac{-88}{120} =-11/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+44}{2*60}=\frac{0}{120} =0 $
| 6p+8=-8+10p+4 | | 5x+6.4x=11.4x | | 5(3x+8)=-31+26 | | 156-41+5y=180 | | 23(j+20)=483 | | x-32+90+x=180 | | 1+7x=8x-11 | | 5x+6.4x=11x | | 4=2(b-4) | | 3x+x-12=73 | | 4x+3x+1=50x= | | 4/w+3=5 | | 3n+8=4n | | (14x-13)=(4x+13)+(6x+2) | | 3b+1.5=1b+5 | | .2x–5=19 | | 7-4n=-5n+5 | | 0=75+30t-4.9t^2 | | 3x+5=2x+2x-6 | | -4x-2=-1+1-3x+5 | | 3x=844 | | (12x-41)+5x=180 | | 7x-(-1)÷-8=-4 | | 6z+1=10+3z | | 9-w=260 | | 24(t-949)=768 | | (3n-6)(5n+3)=0 | | 2(−4b−8)+26=5(−7b−11)+11 | | -3k+6=-6k | | (y-2)^2+3(y+3)=y(y+2)+5y+8 | | 21+6x=93 | | 12x+16=8+6x |