If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2+32x=0
a = 60; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·60·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*60}=\frac{-64}{120} =-8/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*60}=\frac{0}{120} =0 $
| 6x-117=180 | | 9x+162-3x=0 | | 81x^2+4x-36=0 | | n-20=5-0 | | 1+2r=54 | | -8x-24=3(8-2x) | | Y=0.4x+25 | | 9m-18=m-18 | | 6x+9=15.7 | | t2+10=−40 | | -27x³+27x²+1=0 | | 60/500=1/x | | (2x+9)²= | | 18m-11m+-10m=-3 | | 18m-11m+-10m=-3m | | 10j+2j+j-9j+2j=18 | | 19x-11x-5x-x=14 | | 4s+3s-4s=15 | | 125x+5,000=25,000 | | 4x+x-5x+3x+4x=14 | | 4x+x−5x+3x+4x=14 | | 19a-17a=14 | | 31=2x | | 10s-9s=8 | | 75+(4x+-25)=90 | | 5m−3m=2 | | 14x+1+31x-1=180 | | 5x+(3x+12)=90 | | x/4+104=80 | | 6s+1=4s+5 | | -4u=2(-u+3) | | 13x-7=175 |