If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2+3.3x-27=0
a = 60; b = 3.3; c = -27;
Δ = b2-4ac
Δ = 3.32-4·60·(-27)
Δ = 6490.89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3.3)-\sqrt{6490.89}}{2*60}=\frac{-3.3-\sqrt{6490.89}}{120} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3.3)+\sqrt{6490.89}}{2*60}=\frac{-3.3+\sqrt{6490.89}}{120} $
| 20-2x=13+5x | | 4x+1=2x+49 | | 10x-2x=4x+40 | | 6x+9=29+3x | | 5z-3z+9z+4z=60 | | y=12X+190.5 | | b−601=−571 | | 6(2x-1)=8x+2 | | x−601=−571 | | y=89373X+238 | | (2x^2)=^4 | | 6x-5=8-x | | y=190.5X+1 | | y=190.5X+0 | | y=190X+0 | | 11^(x+2)=15 | | 3m-8m=20 | | 0=n^2-n-90 | | 5(2x+4)=4x-50 | | 6x+16x+17x=180 | | -8=4(y-3) | | 2x+3x=145 | | 10x+30=130+20 | | 8x+15x+17=180 | | Y^2-21y+140=0 | | 2.5x-9=8 | | 20x=6.6 | | 2(4x+5)-6(9x-8)=0 | | 5(x-6)=(x+3) | | 2x=3x=144 | | 10x=12x-17 | | 9x-4=3-6x |