If it's not what You are looking for type in the equation solver your own equation and let us solve it.
602+x2=612
We move all terms to the left:
602+x2-(612)=0
We add all the numbers together, and all the variables
x^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| 2(4x+1)=7+7x | | f/24=13 | | 4x-3+2-2x-1=x-1 | | X+26+x+14+4x10=180 | | 3(5z+1)=3(5z+1)=33 | | -8(4+2x)+5x=-6-2(8+8x) | | (15x-10x)X+3=18 | | v/20=30 | | -4=x/19-1 | | 6(r–4)+r+30–7r= | | -7/2=-x/4 | | 60=-5/2x+110 | | 33n+n+7n+6n-45=40 | | 9/7x-12=-3 | | 16y=y/23 | | |2w–4|+5=13 | | 2/5x-4= | | 14y=994 | | -4c+3=-29 | | 5(3x+7)=35+15x | | -215=13x-72 | | 3y+5=-5y-19 | | g−3.95=6.05 | | e4=20 | | -14z+-z+-4=11 | | 25=h/15 | | 2(4x+4)=7+7x | | (3x+17)+(8x-46)=90 | | -20=2n+6 | | (x/11)+8=6 | | 8x+3=5x+3+3x | | d/20=22 |