600(50+x)-600(50-x)=2500-x2

Simple and best practice solution for 600(50+x)-600(50-x)=2500-x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 600(50+x)-600(50-x)=2500-x2 equation:



600(50+x)-600(50-x)=2500-x2
We move all terms to the left:
600(50+x)-600(50-x)-(2500-x2)=0
We add all the numbers together, and all the variables
-(-1x^2+2500)+600(x+50)-600(-1x+50)=0
We multiply parentheses
-(-1x^2+2500)+600x+600x+30000-30000=0
We get rid of parentheses
1x^2+600x+600x-2500+30000-30000=0
We add all the numbers together, and all the variables
x^2+1200x-2500=0
a = 1; b = 1200; c = -2500;
Δ = b2-4ac
Δ = 12002-4·1·(-2500)
Δ = 1450000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1450000}=\sqrt{10000*145}=\sqrt{10000}*\sqrt{145}=100\sqrt{145}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1200)-100\sqrt{145}}{2*1}=\frac{-1200-100\sqrt{145}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1200)+100\sqrt{145}}{2*1}=\frac{-1200+100\sqrt{145}}{2} $

See similar equations:

| 7/9x= | | 2k+6k+2k=20 | | 15q-5=10q+10 | | 2v+5v+47=180 | | 5x+2x-31=60 | | 5x–7=3x+1 | | 6t+17t+42=180 | | 8x+21=5x-6 | | 3m+1m= | | -2(-4v+2)-4v=-4(v+1) | | 2.4x-5=14+2.7x | | 7k-6k+2k+5k=8 | | 6-24x=8x+38 | | -4(x+-30)+-12=4 | | m8=34 | | 10c+92+12c=180 | | 20z-16z=16 | | 10c+92+12c=10 | | 6x-31-x=39 | | /2x=88 | | 20z-16=16 | | 25x^2−10x+2=0 | | 3c+39+72=180 | | 8x-6=2(4x+6) | | 9−3x=17−2x | | 9r-38+-7r=-10 | | H=-4t^2+20t+8 | | (2z+1)+(6z-9)=90 | | (x-3)°=(x+5)° | | -4+6y=14 | | 120=x+15 | | z+z+z+4z-z=12 |

Equations solver categories