6/x+1-3/2=2/3x+3

Simple and best practice solution for 6/x+1-3/2=2/3x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/x+1-3/2=2/3x+3 equation:



6/x+1-3/2=2/3x+3
We move all terms to the left:
6/x+1-3/2-(2/3x+3)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x+3)!=0
x∈R
We get rid of parentheses
6/x-2/3x-3+1-3/2=0
We calculate fractions
(-27x^2)/12x^2+72x/12x^2+(-8x)/12x^2-3+1=0
We add all the numbers together, and all the variables
(-27x^2)/12x^2+72x/12x^2+(-8x)/12x^2-2=0
We multiply all the terms by the denominator
(-27x^2)+72x+(-8x)-2*12x^2=0
Wy multiply elements
(-27x^2)-24x^2+72x+(-8x)=0
We get rid of parentheses
-27x^2-24x^2+72x-8x=0
We add all the numbers together, and all the variables
-51x^2+64x=0
a = -51; b = 64; c = 0;
Δ = b2-4ac
Δ = 642-4·(-51)·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4096}=64$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-64}{2*-51}=\frac{-128}{-102} =1+13/51 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+64}{2*-51}=\frac{0}{-102} =0 $

See similar equations:

| 2×+y=3 | | C(m)=0.50m+30=130 | | C(m)=0.50m+30 | | 5|x-4|+10=50 | | 1/x=1/3x-5 | | y2–100=0 | | 13–3x=-5(3+2x) | | 13–3x=-5(3+2x)* | | 8*n+2=5n-3 | | y=350(1+0.75)4 | | 1.25+2x=18.20 | | x3+64x=-16x2 | | -4y-7=-71 | | 6a-12=4a-20a= | | 118=2w+2(6w-25) | | 5(100)=5x-0.0005x^2 | | −(−x−6.9)+9=1.4x | | 8x-4=+60+7x+4 | | 6w-25+w=118 | | 3x^2-11x+5=-1 | | 0.15*x=400 | | 6x–7=42 | | 9+5n=45+2n | | 15-11=2(x-5) | | 3x2−x=11 | | 1.25+1.25+3x=5.05 | | –7x+4=18 | | (7x+15)=x | | 8x²+108x+36=0 | | 7=u/4-13 | | x2+2x+7=21 | | y/4− 2=2 |

Equations solver categories