6/9X-4/5x=-18/9

Simple and best practice solution for 6/9X-4/5x=-18/9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/9X-4/5x=-18/9 equation:



6/9X-4/5X=-18/9
We move all terms to the left:
6/9X-4/5X-(-18/9)=0
Domain of the equation: 9X!=0
X!=0/9
X!=0
X∈R
Domain of the equation: 5X!=0
X!=0/5
X!=0
X∈R
We add all the numbers together, and all the variables
6/9X-4/5X-(-2)=0
We add all the numbers together, and all the variables
6/9X-4/5X+2=0
We calculate fractions
30X/45X^2+(-36X)/45X^2+2=0
We multiply all the terms by the denominator
30X+(-36X)+2*45X^2=0
Wy multiply elements
90X^2+30X+(-36X)=0
We get rid of parentheses
90X^2+30X-36X=0
We add all the numbers together, and all the variables
90X^2-6X=0
a = 90; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·90·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*90}=\frac{0}{180} =0 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*90}=\frac{12}{180} =1/15 $

See similar equations:

| (6x^2-2x+2)-(5x^2+2x-2)=1 | | 3b−7=2b | | 10+10r=9r | | v/6+7=11 | | 1.4=m3− 1.7 | | (7x^2-8x+10)-(2x^2+x+10)=1 | | 9=12−3w | | y+(4(6)+5)+(8y-55)=180 | | 5x-1=6x-2 | | 4k−10=3k | | 3x+20+4x-36=180 | | 13j−9j=8 | | X^2+5x=1000 | | (7x^2-5x-+11)-(3x^2+2x-11)=1 | | 1=d4− 3 | | –10+6q=4q | | 5(2c-3)=20 | | 14−2f=6 | | 2y+68+180-4y+8=180 | | (6x^2-4x+1)-(2x^2+6x-1)=1 | | –8f=–3−9f | | 3(x+28)+4(x+35)=14 | | 8=3f+5 | | 120+5x=60-5x | | 2(3x+4)=10x-2 | | 3(x+28)+4(x+34)=14 | | (2x^2-2x+3)-(x^2+5x-5)=1 | | 50-5y=1y-4 | | 0.2x2−5=0 | | 6=2w−2 | | 18+15y=-90 | | 2-2w=6 |

Equations solver categories