6/7x+7=2/4x+12

Simple and best practice solution for 6/7x+7=2/4x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/7x+7=2/4x+12 equation:



6/7x+7=2/4x+12
We move all terms to the left:
6/7x+7-(2/4x+12)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 4x+12)!=0
x∈R
We get rid of parentheses
6/7x-2/4x-12+7=0
We calculate fractions
24x/28x^2+(-14x)/28x^2-12+7=0
We add all the numbers together, and all the variables
24x/28x^2+(-14x)/28x^2-5=0
We multiply all the terms by the denominator
24x+(-14x)-5*28x^2=0
Wy multiply elements
-140x^2+24x+(-14x)=0
We get rid of parentheses
-140x^2+24x-14x=0
We add all the numbers together, and all the variables
-140x^2+10x=0
a = -140; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-140)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-140}=\frac{-20}{-280} =1/14 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-140}=\frac{0}{-280} =0 $

See similar equations:

| 1/4(8n+12)=76 | | (w-0.444)(-0.66)=-0.8 | | -3-6v=-7v-19 | | -9-9j=-10j | | 4t-21+6t+6=90 | | 4=1-3(4x+9 | | 3(6-4x)-72x=10x-31 | | -4w+5=-19 | | 6(x-56)-7(x+49)=21-8(x-14) | | -24-1/8p=p | | 7x+60=5x=120 | | 1.2x1.7-30/5=x | | 2(9x-14)=(3x+11) | | b-16=-11 | | 4x-5=8+4 | | 9n-15=45 | | -4j+9=13 | | 2(x+5)=-4(3x-1)+5x | | 5x+1.3=2x+0.3 | | 12+2/x=20 | | -2(5x+8)=54 | | 3(2x+3)=6x+15-3x | | 2x+6(3x+8)=188 | | 6(v+30)=72 | | x-5.53=8.6 | | -12.8+2.2x=7.74-0.4x | | -2x+68+4x=180 | | -3-2c=-2c-3 | | 212=60-u | | 1=y/10 | | 22x12=12 | | 6(x-56)-7(x+49)=21-8x-14 |

Equations solver categories