6/7x+3/5x=17/35

Simple and best practice solution for 6/7x+3/5x=17/35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/7x+3/5x=17/35 equation:



6/7x+3/5x=17/35
We move all terms to the left:
6/7x+3/5x-(17/35)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
6/7x+3/5x-(+17/35)=0
We get rid of parentheses
6/7x+3/5x-17/35=0
We calculate fractions
(-2975x^2)/3675x^2+3150x/3675x^2+2205x/3675x^2=0
We multiply all the terms by the denominator
(-2975x^2)+3150x+2205x=0
We add all the numbers together, and all the variables
(-2975x^2)+5355x=0
We get rid of parentheses
-2975x^2+5355x=0
a = -2975; b = 5355; c = 0;
Δ = b2-4ac
Δ = 53552-4·(-2975)·0
Δ = 28676025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{28676025}=5355$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5355)-5355}{2*-2975}=\frac{-10710}{-5950} =1+4/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5355)+5355}{2*-2975}=\frac{0}{-5950} =0 $

See similar equations:

| t+7-5t/3=5 | | 2y-10+5y=y-7 | | 15+2z=3(9z-8) | | 4b-6b=-16 | | (X-2)(x+6=-7 | | 9x10=3x+2 | | C=0.00013X^2+0.002X^2+5x+2200 | | 13=7y | | F(x)=0.9(0.6)^-3 | | 20x^2+56x-96=0 | | 8x+-x+1+-7=5x+3x+-7+-7 | | -8x+5x+3+-6=-9x+6x+-3 | | 5y+3=24–2y | | 7(-5x+-2)=-53x+18x+9+-23 | | 10000=8000(1+4t) | | s/3=15 | | 4(-5x+-8)=-62x+41x+2-2 | | 3z+8z-12=7z-4z+16 | | p/9=4/6 | | 1/4=1.5x | | 10-(-3x)=11 | | 10^2x=45 | | 5x=100-5 | | x/4+12/3=24 | | 8=64-16x | | x=(4x−7)/2x | | 150=6p-(250+2p) | | 7=-6-6n-5 | | Y-9=-4/5(x+2) | | 6y=-24+9y | | 28n-7=4n+7 | | x=3x/x+3 |

Equations solver categories