If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6/7t-12=3/14t+14
We move all terms to the left:
6/7t-12-(3/14t+14)=0
Domain of the equation: 7t!=0
t!=0/7
t!=0
t∈R
Domain of the equation: 14t+14)!=0We get rid of parentheses
t∈R
6/7t-3/14t-14-12=0
We calculate fractions
84t/98t^2+(-21t)/98t^2-14-12=0
We add all the numbers together, and all the variables
84t/98t^2+(-21t)/98t^2-26=0
We multiply all the terms by the denominator
84t+(-21t)-26*98t^2=0
Wy multiply elements
-2548t^2+84t+(-21t)=0
We get rid of parentheses
-2548t^2+84t-21t=0
We add all the numbers together, and all the variables
-2548t^2+63t=0
a = -2548; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·(-2548)·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*-2548}=\frac{-126}{-5096} =9/364 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*-2548}=\frac{0}{-5096} =0 $
| 7a-3=36+a | | 7x+35=18x+2 | | -2(4u-3)=30 | | 100+(x-2)=149 | | x+5/2=0.8+1.2 | | -3a+10=7 | | .025a+.05=4.5 | | 82-g=45 | | 100+(x-2)2=149 | | (12x-48)/x-1=60/x-1 | | 11x+12x+50=180 | | -5(x+1)-2=28 | | 6x800=10x1000 | | 3x+15+4x+10=180 | | 5x=10x-14+4 | | 3D+-10-10d=17 | | -9(-4+2z)=81 | | 4x+23=7x+12 | | 10-7x=2-8x10 | | -n-(1/2n)=-(115/12)+n | | 10(x+)=-5x | | 9t-2=-38 | | 3(5+z)=-24 | | 6-22=3w-7w | | 1/3f=15 | | -n(-1/2n)=(-115/12)+n | | 75+84=z/9 | | -7x+19=9(x-5) | | -19/15x=4 | | (6b–1)–(4b–2)=2b-1 | | (4x-2)+(2x-4)=180 | | 24×c=1440 |