If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6/7b-10+3/7b=12+13/21b
We move all terms to the left:
6/7b-10+3/7b-(12+13/21b)=0
Domain of the equation: 7b!=0
b!=0/7
b!=0
b∈R
Domain of the equation: 21b)!=0We add all the numbers together, and all the variables
b!=0/1
b!=0
b∈R
6/7b+3/7b-(13/21b+12)-10=0
We get rid of parentheses
6/7b+3/7b-13/21b-12-10=0
We calculate fractions
(63b+6)/147b^2+(-91b)/147b^2-12-10=0
We add all the numbers together, and all the variables
(63b+6)/147b^2+(-91b)/147b^2-22=0
We multiply all the terms by the denominator
(63b+6)+(-91b)-22*147b^2=0
Wy multiply elements
-3234b^2+(63b+6)+(-91b)=0
We get rid of parentheses
-3234b^2+63b-91b+6=0
We add all the numbers together, and all the variables
-3234b^2-28b+6=0
a = -3234; b = -28; c = +6;
Δ = b2-4ac
Δ = -282-4·(-3234)·6
Δ = 78400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{78400}=280$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-280}{2*-3234}=\frac{-252}{-6468} =3/77 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+280}{2*-3234}=\frac{308}{-6468} =-1/21 $
| 7a-3=3a+12 | | (2)/(3)w+1=(7)/(4)w | | 8r+-4=-3r-37 | | 34x+18=35 | | 5x=7=-5=2x | | x-2=9+1 | | 2(n-6)=n+0.25(12-8n) | | 4y2+12y+36=0 | | 64x^2+3=16x | | 6y+5=5y+7=13y-4 | | 14+2x=4x-6 | | 0.5x+2.75=1 | | 7x+3(1+6x)=91 | | 1/5x-7=1 | | 0.4(15a-10)=-(3a+10) | | 15n+11-n=185 | | 132=6(-4y+6) | | 97=10x+50 | | 3p=9.45 | | 12x+15=8x+39 | | p+12p+5p+-3p=-19 | | -6x+4=-34 | | 24=4+c | | ∣25/6+y∣y=74. | | 3c+4c=19-33 | | 232=4k | | 418=y+166 | | 11r-6r=20 | | 7v+v+3=11 | | 7+4x=4x-3 | | 4x+26-2x+11=49 | | 20g-14g=12 |