6+4/5b=9/19b

Simple and best practice solution for 6+4/5b=9/19b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+4/5b=9/19b equation:



6+4/5b=9/19b
We move all terms to the left:
6+4/5b-(9/19b)=0
Domain of the equation: 5b!=0
b!=0/5
b!=0
b∈R
Domain of the equation: 19b)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
4/5b-(+9/19b)+6=0
We get rid of parentheses
4/5b-9/19b+6=0
We calculate fractions
76b/95b^2+(-45b)/95b^2+6=0
We multiply all the terms by the denominator
76b+(-45b)+6*95b^2=0
Wy multiply elements
570b^2+76b+(-45b)=0
We get rid of parentheses
570b^2+76b-45b=0
We add all the numbers together, and all the variables
570b^2+31b=0
a = 570; b = 31; c = 0;
Δ = b2-4ac
Δ = 312-4·570·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{961}=31$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-31}{2*570}=\frac{-62}{1140} =-31/570 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+31}{2*570}=\frac{0}{1140} =0 $

See similar equations:

| -50+5x+10+1/6x=-6 | | X-(x.06)=330000 | | 3x2+14=89 | | 3.9x+5=1.9x+17 | | 79=q+–20 | | n+68=91 | | w+14=96 | | -3x=-18x+9 | | 7e+9=11e+1 | | g/6-8=2 | | 9x−26=7x. | | 10x+7=5x+20 | | 10z^-2+11z^-1-6=0 | | 10e+33=15e+8 | | 10e=33=15e=8 | | 5x+16+0.666666666667x-26=106 | | 7x+4+5x+1+23=180 | | 9e+3=7e+11 | | 3x395=5x(-) | | 1.08^x=1.308 | | 9x+7=5x+14 | | 7x-10+x-1=-5 | | −6x2−4x+6=0 | | 3^-9x=3^12x+4 | | p/4=5p=4= | | 3(4-a)=2(a-6) | | 5(2a+3)=3(a-19) | | 8x+4+10x+6=7x-12 | | 8x+7=9-x-4 | | 0.8x+35=-7=-43 | | 2x+5-9+4x=26 | | 11,400,000+500,000y=9,900,000600,000y |

Equations solver categories