If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6+4/5b+9/10b=8+2/10b
We move all terms to the left:
6+4/5b+9/10b-(8+2/10b)=0
Domain of the equation: 5b!=0
b!=0/5
b!=0
b∈R
Domain of the equation: 10b!=0
b!=0/10
b!=0
b∈R
Domain of the equation: 10b)!=0We add all the numbers together, and all the variables
b!=0/1
b!=0
b∈R
4/5b+9/10b-(2/10b+8)+6=0
We get rid of parentheses
4/5b+9/10b-2/10b-8+6=0
We calculate fractions
40b/50b^2+(-10b+9)/50b^2-8+6=0
We add all the numbers together, and all the variables
40b/50b^2+(-10b+9)/50b^2-2=0
We multiply all the terms by the denominator
40b+(-10b+9)-2*50b^2=0
Wy multiply elements
-100b^2+40b+(-10b+9)=0
We get rid of parentheses
-100b^2+40b-10b+9=0
We add all the numbers together, and all the variables
-100b^2+30b+9=0
a = -100; b = 30; c = +9;
Δ = b2-4ac
Δ = 302-4·(-100)·9
Δ = 4500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4500}=\sqrt{900*5}=\sqrt{900}*\sqrt{5}=30\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30\sqrt{5}}{2*-100}=\frac{-30-30\sqrt{5}}{-200} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30\sqrt{5}}{2*-100}=\frac{-30+30\sqrt{5}}{-200} $
| x-31/2=-52/3 | | 6x=14-10x | | 3/8×n=6 | | -9x-37=-6x+14 | | 11+5y=21 | | 14x+2x-8=2x+20 | | 16+5y=21 | | 8x-2=6x-18 | | 98x^2+28x+1=0 | | 0.4(x+3)=4 | | -5x-161=99-15x | | 62.50*0.18=x | | -66-6x=62-10x | | 1/5g+3=9 | | 4^3x-1=8^x+4 | | 1/5g=9 | | 2=(-9x+21)-5 | | 1/2x=-17 | | -3/4v+4/5=7/8 | | t-9.95=5.45 | | 5.1+d=14.2 | | X^2-9x+11x+12=180 | | (6x-35)(4x+11)=x | | 1×+12+5y+7+40=180 | | 12-a/7=-2 | | 4/y+2/y=3 | | 18-6x=33+x | | -60-6x=42-3x | | 0=6/16y-42 | | 8y-15=6y-6 | | 50x+75=25x+70 | | $0.90x=$13.50 |