6+3(2z-6)-3(4z+3)-10=

Simple and best practice solution for 6+3(2z-6)-3(4z+3)-10= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+3(2z-6)-3(4z+3)-10= equation:


Simplifying
6 + 3(2z + -6) + -3(4z + 3) + -10 = 0

Reorder the terms:
6 + 3(-6 + 2z) + -3(4z + 3) + -10 = 0
6 + (-6 * 3 + 2z * 3) + -3(4z + 3) + -10 = 0
6 + (-18 + 6z) + -3(4z + 3) + -10 = 0

Reorder the terms:
6 + -18 + 6z + -3(3 + 4z) + -10 = 0
6 + -18 + 6z + (3 * -3 + 4z * -3) + -10 = 0
6 + -18 + 6z + (-9 + -12z) + -10 = 0

Reorder the terms:
6 + -18 + -9 + -10 + 6z + -12z = 0

Combine like terms: 6 + -18 = -12
-12 + -9 + -10 + 6z + -12z = 0

Combine like terms: -12 + -9 = -21
-21 + -10 + 6z + -12z = 0

Combine like terms: -21 + -10 = -31
-31 + 6z + -12z = 0

Combine like terms: 6z + -12z = -6z
-31 + -6z = 0

Solving
-31 + -6z = 0

Solving for variable 'z'.

Move all terms containing z to the left, all other terms to the right.

Add '31' to each side of the equation.
-31 + 31 + -6z = 0 + 31

Combine like terms: -31 + 31 = 0
0 + -6z = 0 + 31
-6z = 0 + 31

Combine like terms: 0 + 31 = 31
-6z = 31

Divide each side by '-6'.
z = -5.166666667

Simplifying
z = -5.166666667

See similar equations:

| 244in^2=1/2x12.6in(h) | | 2x-3=12x-15 | | 3a^2+5ab-2b^2=0 | | -5(8+4v)=-3v-6(-5-3v) | | 121cm^3=1/3(3.14)5cm(h) | | 12x=10x+80 | | -6(b-8)-6=4(b+3) | | x+(x*.10)=110 | | 4(x+2)-3(1-x)=12-(4-3x) | | 2x+4(2x-3)=18 | | 12x^7+40x^6+28x^5=0 | | 5x-6x-6=2x-6 | | 8x^3+2x^2-4x-5=0 | | 8x^3+28x^2-4x-5=0 | | 2y-8=6-3y | | h=0.8(200-130) | | h=0.8(200-125) | | 42=3x+9 | | t=0.26(30)+2.82 | | 25x-^3y^10/35x^5y^2 | | 2.25-1.33333333x+x^2=0 | | 2.25-1.333333+x^2=0 | | 6(x+9)=162 | | 6x(9+x)=162 | | (x-1)2-3x=1 | | 8a/3+1=9 | | 3(x+8)+7=7x-4(x-4) | | 8p/15+3=7 | | m/2+m/6=3 | | 5+2(3x-5)=5-3(2x+1) | | 5a-2/3=6 | | 8p/15-3=7 |

Equations solver categories