6+2/3x=-20+5x

Simple and best practice solution for 6+2/3x=-20+5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+2/3x=-20+5x equation:



6+2/3x=-20+5x
We move all terms to the left:
6+2/3x-(-20+5x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(5x-20)+6=0
We get rid of parentheses
2/3x-5x+20+6=0
We multiply all the terms by the denominator
-5x*3x+20*3x+6*3x+2=0
Wy multiply elements
-15x^2+60x+18x+2=0
We add all the numbers together, and all the variables
-15x^2+78x+2=0
a = -15; b = 78; c = +2;
Δ = b2-4ac
Δ = 782-4·(-15)·2
Δ = 6204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6204}=\sqrt{4*1551}=\sqrt{4}*\sqrt{1551}=2\sqrt{1551}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-2\sqrt{1551}}{2*-15}=\frac{-78-2\sqrt{1551}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+2\sqrt{1551}}{2*-15}=\frac{-78+2\sqrt{1551}}{-30} $

See similar equations:

| 9/6=x/9 | | 8+16=-4(5x-6) | | 3/7x-5/1x=3 | | 0.6(-7)+0.6(-1.2x)= | | 7y=-8+8y | | 4b-2/3=12 | | -3r=-2r+10 | | 9u=8+10u | | -4(0.18x+1.05)= | | 12/x=48/20 | | 7+6m=7m+4 | | -8r=-9r+6 | | 4z/9-4=1 | | 0.6(-7)-0.6(-1.2x)= | | 180=x+23+4x+17+80 | | 4x+9+3=22 | | -2x+2x2+8=0 | | 6−6z=-7z | | 3(y-2)+3y-7=y+57 | | 4x+18=3x+9 | | 25=1.4^x | | 8g=8+7g | | 20r-14-2+20r=1r | | x/5+1/4=320/ | | 10+8n=5n-7-7 | | -(-3x+1)-x=-3x-101 | | (b+7)^2=0 | | x/5+1/4=320 | | 5(2x+5)=-36+41 | | (b+7)(b+7)=0 | | -14(x+18)=4(x-18) | | -13=x=9 |

Equations solver categories