6(x+2)=6(x+4)2x

Simple and best practice solution for 6(x+2)=6(x+4)2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(x+2)=6(x+4)2x equation:



6(x+2)=6(x+4)2x
We move all terms to the left:
6(x+2)-(6(x+4)2x)=0
We multiply parentheses
6x-(6(x+4)2x)+12=0
We calculate terms in parentheses: -(6(x+4)2x), so:
6(x+4)2x
We multiply parentheses
12x^2+48x
Back to the equation:
-(12x^2+48x)
We get rid of parentheses
-12x^2+6x-48x+12=0
We add all the numbers together, and all the variables
-12x^2-42x+12=0
a = -12; b = -42; c = +12;
Δ = b2-4ac
Δ = -422-4·(-12)·12
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{65}}{2*-12}=\frac{42-6\sqrt{65}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{65}}{2*-12}=\frac{42+6\sqrt{65}}{-24} $

See similar equations:

| -5y+-5(-6-2y)=0 | | 8+25x-5x=20x24-3x | | 4-(2x+3)=-2(x+4)+8x | | -1+9a=17 | | 7(x-4)=140/10 | | 0.2g+10=50 | | 3x-2.6=+8.2 | | 0.08x+x=550 | | 5x-40=4+x | | -8.3+x=x | | 6.5x+.5=46 | | x/5-16=-10 | | 12x=5(x-5) | | 3+7n=24 | | 5*(x-2)=45 | | 26+12x=412 | | x-6=45/5 | | 13y-17=-5y+36 | | 11m+2=7m+5m | | 2(3x-5)=4x+8-3x | | x^2-5x=142 | | -(3x+6)=2+3x | | 4{2x-7}=8x-3 | | x-12.98=5.033 | | 4x+19+6x-7=180 | | 1/3(9k+3)=−2(k−8) | | 4(-5)+2y=10 | | 42+3b=-4b-1 | | 464=24x+464 | | 8/c=11/6 | | 2/3(n)-2/3=n/6+4/3 | | 2e+5=20e-5 |

Equations solver categories