If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(x+1)+5=3x(2+x)
We move all terms to the left:
6(x+1)+5-(3x(2+x))=0
We add all the numbers together, and all the variables
6(x+1)-(3x(x+2))+5=0
We multiply parentheses
6x-(3x(x+2))+6+5=0
We calculate terms in parentheses: -(3x(x+2)), so:We add all the numbers together, and all the variables
3x(x+2)
We multiply parentheses
3x^2+6x
Back to the equation:
-(3x^2+6x)
6x-(3x^2+6x)+11=0
We get rid of parentheses
-3x^2+6x-6x+11=0
We add all the numbers together, and all the variables
-3x^2+11=0
a = -3; b = 0; c = +11;
Δ = b2-4ac
Δ = 02-4·(-3)·11
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*-3}=\frac{0-2\sqrt{33}}{-6} =-\frac{2\sqrt{33}}{-6} =-\frac{\sqrt{33}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*-3}=\frac{0+2\sqrt{33}}{-6} =\frac{2\sqrt{33}}{-6} =\frac{\sqrt{33}}{-3} $
| 9u-2=61 | | 2x+6(5x−5)=130 | | 12=3=3u | | -7z-49=-7 | | 4z/9+6=-1 | | -2(x=1/3)+9=4 | | 2r-15=3r+2 | | -5m=-22.5 | | 68.88x+45=1.99 | | -3+m=7.5 | | -2x-2=2x-4 | | 720=-3r-10(-7r-5) | | n02+1=−2 | | -4+3w=-28 | | -4+m=-8.5 | | 2.25/x/33=x | | 25-3x=- | | 6x+1+5x-1=86 | | 0.61m-1,51m=9 | | -10+5=5(p-2) | | 1-6|28-4n|=-95 | | 6x+2x-4=32x | | 7x-5=-4x-3 | | 0.5+0.3y=0.7-6.3 | | x+0.03x=2500 | | 4x+70=12x-2 | | -4(u-4)=-8u+44 | | 22=(y/15)+17 | | (x+8)(x+3)=90 | | 98=+t-18 | | 11=2b-1-6b | | √x+5=√2x+7-1 |