If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(8g(2)+2)+45=153
We move all terms to the left:
6(8g(2)+2)+45-(153)=0
We add all the numbers together, and all the variables
6(+8g^2+2)+45-153=0
We add all the numbers together, and all the variables
6(+8g^2+2)-108=0
We multiply parentheses
48g^2+12-108=0
We add all the numbers together, and all the variables
48g^2-96=0
a = 48; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·48·(-96)
Δ = 18432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18432}=\sqrt{9216*2}=\sqrt{9216}*\sqrt{2}=96\sqrt{2}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96\sqrt{2}}{2*48}=\frac{0-96\sqrt{2}}{96} =-\frac{96\sqrt{2}}{96} =-\sqrt{2} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96\sqrt{2}}{2*48}=\frac{0+96\sqrt{2}}{96} =\frac{96\sqrt{2}}{96} =\sqrt{2} $
| 5(w+1)=5 | | 6f^2-3/2f+1/12=0 | | -7x-7=28x-7(5x-7) | | 32z^2+80z+50=0 | | 10x-5x+x-x+x+1=7 | | 8y^2-2y=1 | | 4z^2+19z-12=0 | | 14v=27+5v | | 2v+15=19 | | 18u-45=9u | | 4t^2-t-60=0 | | 5m-(6m+9=53 | | -4(7x10)=-2(14x+20) | | 4u+7=31 | | 2x=x/7-10 | | 14s^2-77s+84=0 | | b/17-9b/17=24/17 | | X+14=3x-30 | | 2(6k-+1)=-38 | | 40/x+1=15/6 | | 8n^2-7n-1=0 | | 5(s+1)=15 | | 6h^2-31h+30=0 | | 2^-x-4=17^8x | | 8g-4g+4g-4=20 | | 6w^2-w-35=0 | | 15q+1=1 | | 3m-3m+3m=3 | | 4(2×-11)-6x=-4 | | 8(7-2p)-7p=7p+26 | | x+14=-20(5-x) | | 6k+4k-9k=19 |