6(7x-2+7)=31x2+20

Simple and best practice solution for 6(7x-2+7)=31x2+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(7x-2+7)=31x2+20 equation:



6(7x-2+7)=31x^2+20
We move all terms to the left:
6(7x-2+7)-(31x^2+20)=0
We add all the numbers together, and all the variables
6(7x+5)-(31x^2+20)=0
We multiply parentheses
42x-(31x^2+20)+30=0
We get rid of parentheses
-31x^2+42x-20+30=0
We add all the numbers together, and all the variables
-31x^2+42x+10=0
a = -31; b = 42; c = +10;
Δ = b2-4ac
Δ = 422-4·(-31)·10
Δ = 3004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3004}=\sqrt{4*751}=\sqrt{4}*\sqrt{751}=2\sqrt{751}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{751}}{2*-31}=\frac{-42-2\sqrt{751}}{-62} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{751}}{2*-31}=\frac{-42+2\sqrt{751}}{-62} $

See similar equations:

| −7x−9=12 | | 0.2x+2.8=3.6 | | 12x–17=33 | | -5+3÷w=-1. | | 4/8x+6/8=2/8x-6/8 | | 10x+1-9x=16+x+5x | | 355-5x=355 | | -2(3y+2)+3y=5 | | -4(r+6)=74 | | 8c+38=-3(-6-4c) | | 2x+4x+18=3x+22+11* | | 8/x+9=2/3 | | 15-x=23–2x | | (3/4)x-2=(1/4)x+4 | | 1x+-9=0x+-38 | | 1/2(1/4x-3/5=1/4(2/5+3/4x) | | 2(-2x+3)=-4(x+1)+10 | | -5+w÷3=-1 | | -12x+9=3+4x-12-16x | | 2(1/4-2/3n)=2.4n+1.3 | | 2x-⁴=256 | | 79=-1+16x | | 10x+19-6x=7 | | -6x–10=20 | | 3x-13+2x+4+11=180 | | 6(7x+7)=31x+20 | | 5+w÷3=-1. | | z/8+2=55 | | 110+4x=6x | | 3(5+2x)=½(10+12x) | | 15-2x+5-3x=x-4 | | 13-14x=38 |

Equations solver categories