6(2x/3)+6(16/3)=6(-4x/2)

Simple and best practice solution for 6(2x/3)+6(16/3)=6(-4x/2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(2x/3)+6(16/3)=6(-4x/2) equation:



6(2x/3)+6(16/3)=6(-4x/2)
We move all terms to the left:
6(2x/3)+6(16/3)-(6(-4x/2))=0
We add all the numbers together, and all the variables
6(+2x/3)-(6(-4x/2))+6(+16/3)=0
We add all the numbers together, and all the variables
6(+2x/3)-(6(-4x/2))+2=0
We multiply parentheses
12x-(6(-4x/2))+2=0
We multiply all the terms by the denominator
12x*2))-(6(-4x+2*2))=0
We add all the numbers together, and all the variables
12x*2))-(6(-4x+4))=0
We add all the numbers together, and all the variables
-4x+12x*2))-(6(=0
Wy multiply elements
24x^2-4x=0
a = 24; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·24·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*24}=\frac{0}{48} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*24}=\frac{8}{48} =1/6 $

See similar equations:

| -x-139=53-9x | | 2(x+4)+3x=15 | | 5x^2-21x+11-7=0 | | 0=-7x^2+14x-3 | | 4b^2-7b-14=0 | | 2^|4x−1|=128 | | 4e=42.8 | | 2^4x+1=128 | | .8x+16=6x | | 70=-5(x^2-4x-10) | | p^2+11=-8p | | 4,140+2,300+x)+2,300+x)+x=1600 | | 6x+4=2+x+7x | | 5a-3=15a-11÷2 | | 4,14+2,300+x)+2,300+x)+x=1600 | | 16v+7=7 | | k^2+48=-16k | | 43​ x+2=83​ x−4 | | 2x+3÷9=3 | | r^2-10r+22=6 | | 2x+5=15;5 | | -50=-5x^2+20x | | x3.7= 1.8 | | 2q−3=15 | | -4n+7=2n=1 | | x+x=-20 | | 6x-9x-4=4x-2 | | 3j−14=1 | | 2x+26=1+25 | | 41/4x=85 | | 4(5b-3))=268 | | 15f^2–17f+2=0 |

Equations solver categories