If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(2x-1)-2x(3x-4)=5(3-4x)
We move all terms to the left:
6(2x-1)-2x(3x-4)-(5(3-4x))=0
We add all the numbers together, and all the variables
6(2x-1)-2x(3x-4)-(5(-4x+3))=0
We multiply parentheses
-6x^2+12x+8x-(5(-4x+3))-6=0
We calculate terms in parentheses: -(5(-4x+3)), so:We add all the numbers together, and all the variables
5(-4x+3)
We multiply parentheses
-20x+15
Back to the equation:
-(-20x+15)
-6x^2+20x-(-20x+15)-6=0
We get rid of parentheses
-6x^2+20x+20x-15-6=0
We add all the numbers together, and all the variables
-6x^2+40x-21=0
a = -6; b = 40; c = -21;
Δ = b2-4ac
Δ = 402-4·(-6)·(-21)
Δ = 1096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1096}=\sqrt{4*274}=\sqrt{4}*\sqrt{274}=2\sqrt{274}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{274}}{2*-6}=\frac{-40-2\sqrt{274}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{274}}{2*-6}=\frac{-40+2\sqrt{274}}{-12} $
| 2(x-6)-4=21 | | -3+6a=9-6a | | 1/7x-3=1/2x-1/3x+6 | | 3(4x+2)-5(-x-1)=45 | | 5(-8b+9)=-31-2b | | 8r-13=-8-3(2-3r) | | 3+10k83=6k+238 | | 41/4+x=567/8 | | 6(2+y)=3(3–y) | | -7r-6=-13+1-7r+6 | | 176=1/2(40)h | | 26+10r=6(r+9) | | X=1/5y+3 | | 7x2-12x=0 | | -10(-2p-7)=-34+7p | | -2(2x+7)=-12-6x | | p-4p=12-3p+3p | | -3=-3(t-2)-6 | | -5x2-2x+1=0 | | 11d=81=16d | | -2x2-7x=0 | | 0.8x+1.2=2x-2.4 | | (x/5)-(x/2)=21 | | 2=8y-(6y-10) | | 8x-(3x-6)=29 | | -41/14+2b=-8/7b+1 | | 1/3)7a-1)=2a+7 | | F(x)=x+x-x+8 | | -3(d+12)=8-4d | | (x-3)2=2x-1 | | Y=0.125x7 | | (X+2×2)+(x+2)-12=0 |