6(2x-1)-12=-2(x2+10)

Simple and best practice solution for 6(2x-1)-12=-2(x2+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(2x-1)-12=-2(x2+10) equation:



6(2x-1)-12=-2(x2+10)
We move all terms to the left:
6(2x-1)-12-(-2(x2+10))=0
We add all the numbers together, and all the variables
-(-2(+x^2+10))+6(2x-1)-12=0
We multiply parentheses
-(-2(+x^2+10))+12x-6-12=0
We calculate terms in parentheses: -(-2(+x^2+10)), so:
-2(+x^2+10)
We multiply parentheses
-2x^2-20
Back to the equation:
-(-2x^2-20)
We add all the numbers together, and all the variables
-(-2x^2-20)+12x-18=0
We get rid of parentheses
2x^2+12x+20-18=0
We add all the numbers together, and all the variables
2x^2+12x+2=0
a = 2; b = 12; c = +2;
Δ = b2-4ac
Δ = 122-4·2·2
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{2}}{2*2}=\frac{-12-8\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{2}}{2*2}=\frac{-12+8\sqrt{2}}{4} $

See similar equations:

| 1.6y-7.3=0.9 | | 5x-1=-4x-6+4 | | x+53x-15=21 | | 69+4x=360 | | 5(t+3)=3.5 | | y-28=10 | | 12=2x-16+x-8 | | -39=3n-3 | | 240/x-240/x+4=2 | | 2+7g+8=-14 | | 45=-3(j-2) | | 3x-15=21x+5 | | 0.66+1+0.33x=15 | | x^2+9x=60-6 | | 6y-22+3y=-4 | | 11x/21-10=x/7+21 | | 5•x=45 | | 4(w-1)=-9w+48 | | (8x+4)=76 | | 7+x=2x-9+7 | | 15(2)+.10m=10(2)+.15m | | 4*(k+1)=8-3*(2k-4) | | 2(p-3)=30 | | x/5+7=-13 | | 5x+5x+5x=14x+1 | | 5x-15=4x-6 | | 9w-6.3=5.3 | | 4y-11=6y+29 | | 3x-4+2x=6(x-5) | | 12.5=1/n | | 6(6v+6)-6=6v | | 3y-30=36 |

Equations solver categories