6(-n+8)-3(5n-3)=n+4n

Simple and best practice solution for 6(-n+8)-3(5n-3)=n+4n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(-n+8)-3(5n-3)=n+4n equation:


Simplifying
6(-1n + 8) + -3(5n + -3) = n + 4n

Reorder the terms:
6(8 + -1n) + -3(5n + -3) = n + 4n
(8 * 6 + -1n * 6) + -3(5n + -3) = n + 4n
(48 + -6n) + -3(5n + -3) = n + 4n

Reorder the terms:
48 + -6n + -3(-3 + 5n) = n + 4n
48 + -6n + (-3 * -3 + 5n * -3) = n + 4n
48 + -6n + (9 + -15n) = n + 4n

Reorder the terms:
48 + 9 + -6n + -15n = n + 4n

Combine like terms: 48 + 9 = 57
57 + -6n + -15n = n + 4n

Combine like terms: -6n + -15n = -21n
57 + -21n = n + 4n

Combine like terms: n + 4n = 5n
57 + -21n = 5n

Solving
57 + -21n = 5n

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '-5n' to each side of the equation.
57 + -21n + -5n = 5n + -5n

Combine like terms: -21n + -5n = -26n
57 + -26n = 5n + -5n

Combine like terms: 5n + -5n = 0
57 + -26n = 0

Add '-57' to each side of the equation.
57 + -57 + -26n = 0 + -57

Combine like terms: 57 + -57 = 0
0 + -26n = 0 + -57
-26n = 0 + -57

Combine like terms: 0 + -57 = -57
-26n = -57

Divide each side by '-26'.
n = 2.192307692

Simplifying
n = 2.192307692

See similar equations:

| ax-2a+ax=0 | | 5.5y-2.5=9y-1 | | 7y-7=5.5y-2.5 | | 7x=-27 | | 9y-1=7y-7 | | 9y-1=4y-4 | | 4y-4=7y-7 | | 9c-4=1+8x | | 5+4x=30 | | 7y-7=13y-5 | | .9m-2=.95+3 | | 83=10logI | | (2+5t)(3+t+8t^2)= | | -2x-6+40=360 | | 2x+71+9=360 | | 7y-(4y+14)=5-(3y-4) | | 3x+3b=4x+b | | 5=.75x | | Y=cx^4 | | 0.9x+0.98(4-x)=3.84 | | -43x^2+387x=0 | | 4sin^3x-sinx=0 | | 6x^2-0.5=0 | | .5T+.66=.33-T | | 0.9x+0.9(4-x)=3.84 | | -16x^4-32x^3-80x^2=0 | | 5(x-2)=5x+2(2-x) | | 94.54+0.95= | | 55-90x+27+15x=7 | | 99.50*.95= | | 35r^2+8r-3= | | 5x-1+39=90 |

Equations solver categories