If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2=15
We move all terms to the left:
5z^2-(15)=0
a = 5; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·5·(-15)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*5}=\frac{0-10\sqrt{3}}{10} =-\frac{10\sqrt{3}}{10} =-\sqrt{3} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*5}=\frac{0+10\sqrt{3}}{10} =\frac{10\sqrt{3}}{10} =\sqrt{3} $
| X-1/2=5/3x+6 | | -27+x=64 | | 35000=x(0.05) | | 3−(4x+1/2)=1/2(x-10) | | x2−11,6x+2,9=0 | | 180=(12x+7)+(9x+5) | | 8x=12x+48 | | 2/3x-5/4x=1/6 | | 44=9x+3 | | 5x–8=4x–7 | | c+2*c-3=14 | | 42x-18=360 | | 9(x+4)=50 | | 9x–5x+10=14 | | 1/5x-3=x | | 12x9=27 | | 2t+10=2t+16 | | 4^y+6=6 | | (x)(x+12)=160 | | 3/5x3/5x3/5x3/5x3/5=x | | -4(1+7x)+4=112 | | X*0.2+x=52 | | x^2+2.4x-3.36=0 | | 12x+3=-5x+4 | | 21/2c+13(-2c+12)/4=-4/15(-4c-6)-5/3c | | 1.5x+x=8 | | X(.2)=52-x | | 2(x+3)=4x–4 | | 2(x+3)=4x–4 | | -2/5=-(2x+4)/10-34/5x | | m/3=7-m/4 | | x*x=504 |