If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2-20=0
a = 5; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·5·(-20)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*5}=\frac{-20}{10} =-2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*5}=\frac{20}{10} =2 $
| -10+19=7k-4k | | -54=c+4 | | 16-3p=2.3p+5 | | -1=7c-(8c-5) | | 72+2x=5x+60 | | 9y+2=4y-13 | | 28+35=2y+7y | | -18=r-2 | | 6x-(3x-13)=33 | | x/4+2x-3/8=3 | | 9=8a-(-6+9a) | | 40-2x=6x-6(-6x+2) | | 3x+30=2x+15. | | 9c=7c−2 | | y/6+89=96 | | 104-20=8r+6r | | 5-4d=13 | | 9*(n/5)=9/(n/5) | | 7z+3z=-24+84 | | 8w-47=-3w-3 | | 7z+3z=-24+74 | | y+-4=19 | | 3x+5=-10x+16 | | |5y+5|=35 | | 10x+3=5-4x | | 8p-5p=27-18 | | 1/14x+3=19 | | 9n-3=36 | | 5w+2-8w=5-3w-1 | | 3x/60=2 | | 8k+10=3k | | 9k-(-7k+5)=-101 |