If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2-17z+10=0
a = 5; b = -17; c = +10;
Δ = b2-4ac
Δ = -172-4·5·10
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{89}}{2*5}=\frac{17-\sqrt{89}}{10} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{89}}{2*5}=\frac{17+\sqrt{89}}{10} $
| -2(-6+4k)=-1 | | 2b=-1616 | | 6-(10+2d)=9-d | | 4.1+10m=8.45 | | 67-7=5b+10 | | p−1=2 | | 8g-g+5=7g+5 | | W/s=3 | | 2p-71+3p=30 | | 3.9g+8=1.9g+18 | | -5z2-3z-11=-6z2 | | -7/8x-9/40x+1/5=72 | | -0.50x+3=5 | | -1=j-5 | | -y/6=-21 | | 2d-3/3=7 | | 18x=12x=6 | | -x+4(x+1)=2x | | -3n+8=-7n-7 | | 2x+8=2x-0-3 | | X-3(7x+4)+3(x-9)=-355 | | 5x(x=5) | | 1/8x-5=1/6x+10 | | -17-17+19p=18+15p | | 7x^2+25-12=0 | | 14.62÷4=d | | 6(2x-8)=3=15 | | -9(3x+4)=18 | | 32-7x=(x+3) | | 5x+20=3x+90 | | 2(5x+4)=-5(5x-2)+4x | | -15=k=-9 |