If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2+19z-4=0
a = 5; b = 19; c = -4;
Δ = b2-4ac
Δ = 192-4·5·(-4)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-21}{2*5}=\frac{-40}{10} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+21}{2*5}=\frac{2}{10} =1/5 $
| 22=3x^2 | | 4^x=0.008 | | 7x-6+4x=12+4x-8 | | 7=v/5+2 | | 10^x-2=1000 | | (9x+4)=(13x-16) | | 5r+2=–1+4r | | 3x+-1=18 | | -6=6+2j | | X^2+50x-10000=0 | | 8×(h+6)h=5 | | 7=24÷x+6 | | Y=24÷x+6 | | (-50x)+600=250 | | -4(x7)=36 | | 3(5x–4)–5(5+2x)–2x=x–6(5+x) | | 4j−5=7 | | 6(5-7y)=3(3+7y) | | 0.2(g-8)=0.6(g-16) | | 3r+22=88r | | 16–5x=3x–8 | | 0.2(g-8)=0.6(g-8) | | 2+1/2y-34=12 | | x+3/18=2/3 | | C=5n+5 | | x-9=7x+14 | | (D2+2D+4)y=0 | | 2(x-7)^(5)+3=67 | | 24=x+35 | | (2x+1)(x-3)=-4 | | (7x)x5=140 | | 0.5(x-2)=7.75-3x |