If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z(5z+1)=0
We multiply parentheses
25z^2+5z=0
a = 25; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·25·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*25}=\frac{-10}{50} =-1/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*25}=\frac{0}{50} =0 $
| 3x=2x+3. | | 43=9r−11 | | 5+x=x/2 | | 5+11−2x=25 | | 2+6r=-10=2 | | 4x(180÷12)=(7+9) | | x+35=9 | | 8x=−5 | | 2x+6+2x=90 | | 6(x+1)–5x=8+2(x–1)= | | .11y+.08(y+2000)=1110 | | 5x+11−2x=25 | | 2x-9+7x=72 | | 2x+8-4x=8 | | 2x²-14x-155=0 | | 118=2x+7x+10 | | 4+3x-7x=-20 | | 26=t-46 | | 40=-3x-3x-2 | | 1=4x-6x+7 | | 360=3x+(2x/10)+(2x+5)+(2x-15) | | -7v-2=16 | | 7x-7+4x=-128 | | 5z(5+1)=0 | | 6x-4x=124 | | 6x+10=2+3 | | 8-4x-2x=-40 | | 6x+7+5x=73 | | 11-3x=21 | | 8=3x-5x+10 | | 5x+4-7x=6 | | 3-7x+2x=-32 |