If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2=12y
We move all terms to the left:
5y^2-(12y)=0
a = 5; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·5·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*5}=\frac{0}{10} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*5}=\frac{24}{10} =2+2/5 $
| 6x+3=−39 | | 4c=21/5 | | w-6.5=-2.5 | | w-6.5=2.5 | | X+2/6=4/3+x-9/2 | | 3(5x+7)=-25+1 | | 9h+10=55 | | 9(x-1)-3=4x+5(-3=x) | | 3(x-4)+16=2(x+5 | | 6p-4p-1=19 | | 1651=300g+382 | | 1651=300g-382 | | 4x-29+15x-9=7x-10 | | 3j-2j+2j=15 | | 2x+16-3x^2=0 | | 9(x-1)-3=4x+51-3+x) | | -1.1=b+13 | | 4z/9+2=8 | | 1/3x+1x=4-2 | | 15=1.5+p | | 7=4m-13 | | 3/4p=$36 | | (n)/(5)=(6)/(7) | | 2r-1=37 | | |n+1|=2 | | 6r-6r+3r-2r=16 | | 3x+1+4x+3+95=180 | | -3p/5+8/5=1 | | 1338=200g+394 | | -p-5=-(6p-2)+(5+7p | | 6+5x=4+6x | | -3+w/3=18 |