5y2-22y-15=0

Simple and best practice solution for 5y2-22y-15=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y2-22y-15=0 equation:



5y^2-22y-15=0
a = 5; b = -22; c = -15;
Δ = b2-4ac
Δ = -222-4·5·(-15)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-28}{2*5}=\frac{-6}{10} =-3/5 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+28}{2*5}=\frac{50}{10} =5 $

See similar equations:

| -2(b^2+3b-2)=0 | | 12x+15=25 | | -1/4x^2+16x-30=0 | | 18x-6=6x | | 6x^2+x+1=6x6x2+x+1=6x | | 5x=614 | | 4x2−4x−11=−8 | | 6x^2-10x+8=3x+6 | | 6x^2-10x+8=3x+66x2−10x+8=3x+6 | | 0.78x-0.4=-1.16+0.8x | | -15-2n=-2n+5n | | 3c+4D=31c=9 | | X^2+2x+10=100 | | 3c+4D=31 | | 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x=999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | 4-3/4x=13 | | 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x=999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | 5x-157=183x-9y=24/5 | | 110-0.5x=90 | | 10000000000000000000000000000000000000000000000000000x=2000000000000000000000000000000000000000000000000000000000000000000000 | | 3x^2-4)(3x^2+4)=0 | | -0.25x=75=60 | | -025x=75=60 | | 100x=600 | | 2+(x+3)=9 | | 12x-3(3x+4)=36 | | 0=3x+7/2x+5 | | 261-x=13*14 | | 195/x=82-69 | | n^2+n+20=0 | | 5/9x+10=0 | | y+40+75=180 |

Equations solver categories