If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-18y-23=0
a = 5; b = -18; c = -23;
Δ = b2-4ac
Δ = -182-4·5·(-23)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-28}{2*5}=\frac{-10}{10} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+28}{2*5}=\frac{46}{10} =4+3/5 $
| 10-(-6+2x)=5x+4+(2+1) | | 16-3/3=x | | 400+0.1x^2=0.2x | | 10-(-6+2x)=5x+4+(2+1+) | | 7x/2-2x=36 | | 3c+6-2c=14 | | x+6=2x/3 | | -6=2+u | | -3(x-4)=2(8-4x) | | -2=v-4= | | 9=1/3x+9x=1 | | 7-6(2x-3)=42 | | 32x-7-4=-1 | | 9=1/3x1+9 | | 3x+8=9x-10 | | 3=2r+7 | | 0,35x=28 | | 5p-14=1p+4 | | 2+3x=50-5x | | 7=v/3 | | 7=v/4= | | 8/11+5z=3/11 | | 5X-14=-7x+3 | | |2m-1|=3 | | 4x+5x=3x-7 | | 2x+3=-2x-9 | | x*x+12x-540=0 | | 3x+15+7x-25=180 | | 11+21-3p=17 | | 5(2x-3)=4x+9 | | 6x+8=-26 | | (K+4)^2-4*2*k=0 |