If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y-1/y+4=y+9/y+4
We move all terms to the left:
5y-1/y+4-(y+9/y+4)=0
Domain of the equation: y!=0
y∈R
Domain of the equation: y+4)!=0We get rid of parentheses
y∈R
5y-1/y-y-9/y-4+4=0
We multiply all the terms by the denominator
5y*y-y*y-4*y+4*y-1-9=0
We add all the numbers together, and all the variables
5y*y-y*y-10=0
Wy multiply elements
5y^2-1y^2-10=0
We add all the numbers together, and all the variables
4y^2-10=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $
| 5d-4+2(d+2)=3d+8 | | u^2-8u/9=0 | | 12x-52=7x-7 | | 17x-13=5x+23 | | (D^8+6*D^6-32D^2)y=0 | | 6m-5=m+10 | | 64(4^3x)=16 | | Y=100+11.50x | | 45x+20=x | | -3x/4=12-6x | | 2x^2+4x+396=0 | | 256^x=1/x | | t^2+5t+13=0 | | 40x-900=-5x+900 | | 3+2y=120 | | F(x)=-2x^2+4x-9 | | -4/w+18=16 | | 6b+2=74 | | 28x-38=74 | | 10x+55=45 | | 3x(10)=30 | | 1.5(x+9=45 | | 1/2b+23=28 | | 8^(x)-8^(x-2)=126 | | 166=2(42x-1) | | 90-(x+3)/4=87 | | 7.34+n/4=1.29 | | 7.34+n=5.16 | | 5.6=x+0.8 | | 4y-13=-8+11 | | 13000/x=100/65 | | m-5m=-14 |