If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 5y + 3y(y + -8) = 4(y + 2) + -3 Reorder the terms: 5y + 3y(-8 + y) = 4(y + 2) + -3 5y + (-8 * 3y + y * 3y) = 4(y + 2) + -3 5y + (-24y + 3y2) = 4(y + 2) + -3 Combine like terms: 5y + -24y = -19y -19y + 3y2 = 4(y + 2) + -3 Reorder the terms: -19y + 3y2 = 4(2 + y) + -3 -19y + 3y2 = (2 * 4 + y * 4) + -3 -19y + 3y2 = (8 + 4y) + -3 Reorder the terms: -19y + 3y2 = 8 + -3 + 4y Combine like terms: 8 + -3 = 5 -19y + 3y2 = 5 + 4y Solving -19y + 3y2 = 5 + 4y Solving for variable 'y'. Reorder the terms: -5 + -19y + -4y + 3y2 = 5 + 4y + -5 + -4y Combine like terms: -19y + -4y = -23y -5 + -23y + 3y2 = 5 + 4y + -5 + -4y Reorder the terms: -5 + -23y + 3y2 = 5 + -5 + 4y + -4y Combine like terms: 5 + -5 = 0 -5 + -23y + 3y2 = 0 + 4y + -4y -5 + -23y + 3y2 = 4y + -4y Combine like terms: 4y + -4y = 0 -5 + -23y + 3y2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1.666666667 + -7.666666667y + y2 = 0 Move the constant term to the right: Add '1.666666667' to each side of the equation. -1.666666667 + -7.666666667y + 1.666666667 + y2 = 0 + 1.666666667 Reorder the terms: -1.666666667 + 1.666666667 + -7.666666667y + y2 = 0 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + -7.666666667y + y2 = 0 + 1.666666667 -7.666666667y + y2 = 0 + 1.666666667 Combine like terms: 0 + 1.666666667 = 1.666666667 -7.666666667y + y2 = 1.666666667 The y term is -7.666666667y. Take half its coefficient (-3.833333334). Square it (14.69444445) and add it to both sides. Add '14.69444445' to each side of the equation. -7.666666667y + 14.69444445 + y2 = 1.666666667 + 14.69444445 Reorder the terms: 14.69444445 + -7.666666667y + y2 = 1.666666667 + 14.69444445 Combine like terms: 1.666666667 + 14.69444445 = 16.361111117 14.69444445 + -7.666666667y + y2 = 16.361111117 Factor a perfect square on the left side: (y + -3.833333334)(y + -3.833333334) = 16.361111117 Calculate the square root of the right side: 4.044887034 Break this problem into two subproblems by setting (y + -3.833333334) equal to 4.044887034 and -4.044887034.Subproblem 1
y + -3.833333334 = 4.044887034 Simplifying y + -3.833333334 = 4.044887034 Reorder the terms: -3.833333334 + y = 4.044887034 Solving -3.833333334 + y = 4.044887034 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '3.833333334' to each side of the equation. -3.833333334 + 3.833333334 + y = 4.044887034 + 3.833333334 Combine like terms: -3.833333334 + 3.833333334 = 0.000000000 0.000000000 + y = 4.044887034 + 3.833333334 y = 4.044887034 + 3.833333334 Combine like terms: 4.044887034 + 3.833333334 = 7.878220368 y = 7.878220368 Simplifying y = 7.878220368Subproblem 2
y + -3.833333334 = -4.044887034 Simplifying y + -3.833333334 = -4.044887034 Reorder the terms: -3.833333334 + y = -4.044887034 Solving -3.833333334 + y = -4.044887034 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '3.833333334' to each side of the equation. -3.833333334 + 3.833333334 + y = -4.044887034 + 3.833333334 Combine like terms: -3.833333334 + 3.833333334 = 0.000000000 0.000000000 + y = -4.044887034 + 3.833333334 y = -4.044887034 + 3.833333334 Combine like terms: -4.044887034 + 3.833333334 = -0.2115537 y = -0.2115537 Simplifying y = -0.2115537Solution
The solution to the problem is based on the solutions from the subproblems. y = {7.878220368, -0.2115537}
| B+26.7=102.4 | | 4(u-2)-6u=-2 | | -1(1+7p)-6(-7-p)=36 | | 2cot^2x-6=0 | | (9d^4)/(d-3)/(d)/(d-3) | | .75x+.625=4x | | -2n+7=-4n-4 | | 3+[-(8)]= | | 0,5=12*x/0.67*70 | | X/-9-5=-11 | | 14x+11=6x | | 5w+34=2(1-7w) | | d+21.5=32.6 | | 4(2x+3)=x+2 | | 4x^4=4 | | 9x1/17 | | -29.9=1.7n+5.8+5.3n | | 3-3x=8-8x | | 3(x-2)=4(3+0.5x) | | 5x+(x+2)=126 | | 4[8-(9x-5)]+6x=0 | | 28x-3=53 | | mx+3b=1 | | 2x-3=11x-17 | | 3b^2+4b-39=0 | | 11x-7=9x+6 | | f(-2)=5x+3 | | 4n+15=13 | | 2(4x)+4x=24 | | 2y+14=-28 | | -5t^2+45=h | | sin55=(x/9) |