5y+3y(y-5)=5(y+1)-3

Simple and best practice solution for 5y+3y(y-5)=5(y+1)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y+3y(y-5)=5(y+1)-3 equation:



5y+3y(y-5)=5(y+1)-3
We move all terms to the left:
5y+3y(y-5)-(5(y+1)-3)=0
We multiply parentheses
3y^2+5y-15y-(5(y+1)-3)=0
We calculate terms in parentheses: -(5(y+1)-3), so:
5(y+1)-3
We multiply parentheses
5y+5-3
We add all the numbers together, and all the variables
5y+2
Back to the equation:
-(5y+2)
We add all the numbers together, and all the variables
3y^2-10y-(5y+2)=0
We get rid of parentheses
3y^2-10y-5y-2=0
We add all the numbers together, and all the variables
3y^2-15y-2=0
a = 3; b = -15; c = -2;
Δ = b2-4ac
Δ = -152-4·3·(-2)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{249}}{2*3}=\frac{15-\sqrt{249}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{249}}{2*3}=\frac{15+\sqrt{249}}{6} $

See similar equations:

| 7v=11v-52 | | -4x-4(5x+8)=24 | | 0=7n+4 | | 3a-81=a+25 | | 3x-9=-2×+21 | | 5(2.72)^(2x)+16=56 | | -2x/16=6 | | 3+3x–x+2=3x+4 | | 5y+15=22 | | 5y+59=2y+65 | | 13m-17=24 | | 4-n2=-70 | | 7p=p+24 | | 12m-17=24 | | 12x+60=120 | | 1000=50000-8x | | 5b-10=95 | | W+45=4w+39 | | x+3=(x-1) | | 4x+83=3x+86 | | 5x+53=90 | | 2c+4=34 | | 2t=t+34 | | 5n-15=180 | | 6r-8=16 | | 5w+30=10w | | 2x-5=3×-12 | | 3v=32-v | | x^2+x-3=65 | | 23=q+17 | | 6-y/y=8/4 | | -2(x-1)/3=2-x/4 |

Equations solver categories