5y+2=1/210y+4

Simple and best practice solution for 5y+2=1/210y+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y+2=1/210y+4 equation:



5y+2=1/210y+4
We move all terms to the left:
5y+2-(1/210y+4)=0
Domain of the equation: 210y+4)!=0
y∈R
We get rid of parentheses
5y-1/210y-4+2=0
We multiply all the terms by the denominator
5y*210y-4*210y+2*210y-1=0
Wy multiply elements
1050y^2-840y+420y-1=0
We add all the numbers together, and all the variables
1050y^2-420y-1=0
a = 1050; b = -420; c = -1;
Δ = b2-4ac
Δ = -4202-4·1050·(-1)
Δ = 180600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180600}=\sqrt{100*1806}=\sqrt{100}*\sqrt{1806}=10\sqrt{1806}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-420)-10\sqrt{1806}}{2*1050}=\frac{420-10\sqrt{1806}}{2100} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-420)+10\sqrt{1806}}{2*1050}=\frac{420+10\sqrt{1806}}{2100} $

See similar equations:

| 5(x-1)+x=6(x+3)-4x | | 32=5p+29 | | 10x=3x-7 | | (5)/(6)x+5=7-(1)/(2)x | | A=9ww= | | 3(7x-9-19x=-15 | | 25x+13x+2+70=180 | | 60t-30=40t | | -8(-8x-5=-6x-22 | | (3x-5)x=27.5 | | 9x2+54x+79=0 | | 65-r=26 | | 2x=7x+4+2x+32 | | 1/2s=1s-21 | | 0.08=(24000t)(t)-12000t² | | 1b-5-12b=20 | | 4x-(2x-)=x+5+x+6 | | 2p-2(4-3p)=3(p-3)-34 | | 7+2(3x-5)=15 | | 1/3x+20=x | | 42-3u=30 | | x3-8x+6=0 | | -5(x-8)-8=32 | | 9=7u-19 | | 7+12(3x-5)=15 | | 5g+4(-3+2g)=1-1g | | (5x-15)/2-1=14 | | 6g-19=17 | | 4x+7=3(x-4)+20 | | b/13-5b/13=24/13 | | -2p-2(4-3p)=3(p-3)-34 | | X+2x+1+4x=36 |

Equations solver categories