5y(2y-3)+(2y-3)=y+3/4

Simple and best practice solution for 5y(2y-3)+(2y-3)=y+3/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y(2y-3)+(2y-3)=y+3/4 equation:



5y(2y-3)+(2y-3)=y+3/4
We move all terms to the left:
5y(2y-3)+(2y-3)-(y+3/4)=0
We add all the numbers together, and all the variables
5y(2y-3)+(2y-3)-(+y+3/4)=0
We multiply parentheses
10y^2-15y+(2y-3)-(+y+3/4)=0
We get rid of parentheses
10y^2-15y+2y-y-3-3/4=0
We multiply all the terms by the denominator
10y^2*4-15y*4+2y*4-y*4-3-3*4=0
We add all the numbers together, and all the variables
10y^2*4-15y*4+2y*4-y*4-15=0
Wy multiply elements
40y^2-60y+8y-4y-15=0
We add all the numbers together, and all the variables
40y^2-56y-15=0
a = 40; b = -56; c = -15;
Δ = b2-4ac
Δ = -562-4·40·(-15)
Δ = 5536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5536}=\sqrt{16*346}=\sqrt{16}*\sqrt{346}=4\sqrt{346}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-4\sqrt{346}}{2*40}=\frac{56-4\sqrt{346}}{80} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+4\sqrt{346}}{2*40}=\frac{56+4\sqrt{346}}{80} $

See similar equations:

| (3x+1)(2x)=0 | | G(x)=-1/2(2)^x | | 8=(a)/(3)+6 | | -4(x-(0))=40 | | 3(-3y+5)=60 | | -3w—4+5w=-32 | | (3x+6)(3x-7)=0 | | 36-6(x-5)=0 | | 5x-35=7x | | X+3=-4x+17 | | -1+10x=2+18x | | 1(x-(-5))=6 | | X+y=278 | | 9x+7+4(2x-5)=55 | | 2x-3=2x+18 | | 8x-50=5x-17 | | 3p+2=27 | | 13x-37=2x+37 | | z+7=13.4 | | 12+2=2r-13 | | 8x^2=500+2x^2 | | 8m-4=10 | | 9+15x-4=17 | | 7x2+118=125 | | t^2-70t+612.5=0 | | 20+50+2=x-2 | | 22-6x=6x+10 | | 78.4=4.9*t^2 | | (x3+x3)=0 | | 78.4=4.9*t² | | 78.4=4.9*t | | 5m52m=125 |

Equations solver categories