If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=60
We move all terms to the left:
5x^2-(60)=0
a = 5; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·5·(-60)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*5}=\frac{0-20\sqrt{3}}{10} =-\frac{20\sqrt{3}}{10} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*5}=\frac{0+20\sqrt{3}}{10} =\frac{20\sqrt{3}}{10} =2\sqrt{3} $
| 9+4b=61 | | 10-5h=2 | | -6x+7=18 | | 4x+3x+2x+x=180 | | y=-2-6/7+1 | | -6x+7=17 | | (-15-6)m=2 | | 12s=13=25 | | 0.2p-8=0.4p-7 | | 6+n-6=8- | | 3/x-2=7/4x-8 | | 5(s+3)^2-14(s+3)=3 | | 40x^2+15x-4=0 | | (3*x–1)(5*x+4)–15*x^2=17 | | 12x+5+21x+3+25=180 | | 14-x/3=x/3 | | 12x+5+21x+25=180 | | 22/3w=48 | | 36+b^2=196 | | g/2+11=14 | | 2.4x=24 | | 25+12x+5=180 | | 2x-6(3x+12/9)=-8 | | 12=3/4x+5/6 | | 5/4x+1=1/4 | | -3x+6(2+5x)=-12 | | b^2=160 | | 4(7)+8y=20 | | -148=4x-8(1+4x) | | 12x+5+21x+3=180 | | 5/3x+1/3x=231/3+8/3x | | 3^x=6^4x-2 |