If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-3x-6=0
a = 5; b = -3; c = -6;
Δ = b2-4ac
Δ = -32-4·5·(-6)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{129}}{2*5}=\frac{3-\sqrt{129}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{129}}{2*5}=\frac{3+\sqrt{129}}{10} $
| 6x+14=13 | | 5(-3x-2)-(x-3)=-4(4x+5)+130=0 | | 9m+8=-73 | | (1x+21)+(2x+17)+(2x+17)=180 | | 42+5y=7 | | X/4+6x/7=93 | | 3x+6=-9-4x | | 5x-7=-5+11x | | 10-5a=-9a+4 | | |m+4|=-9 | | 5x+-4=8-3x | | 4d=176 | | 3x+6=20-4x | | (3x-8)+(6x-41)+(6x-41)=180 | | 4x+2=(6-4x) | | (3x-7)=2.65 | | 3x+26=x+30 | | (1)/(2)(4x)=-20 | | (1.35d)=180.7 | | 42d=672 | | 6/5w=39 | | d-(0.35)=180.7 | | 4d=200 | | 16.5+2p=7.5+4p | | 7d=154 | | 0.1x=0-2(x+2) | | -2y+30=-8(y-9) | | (7x-27)+(9x-34)+(9x-34)=180 | | 7/10p*8=6*1/5p | | 3,00d=9,900 | | 2(20x-2)-2x=34 | | -2(u+3)=-4u+10 |